Jacobi theta 1
From specialfunctionswiki
Let $q \in \mathbb{C}$ with $|q|<1$. The Jacobi $\vartheta_1$ function is defined by $$\vartheta_1(z,q)=2q^{\frac{1}{4}} \displaystyle\sum_{k=0}^{\infty} (-1)^k q^{k(k+1)} \sin(2k+1)z,$$ where $\sin$ denotes the sine function.
Properties
References
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): 16.27.1