Digamma at n+1
From specialfunctionswiki
Theorem
The following formula holds: $$\psi(n+1)=1+\dfrac{1}{2}+\dfrac{1}{3}+\ldots+\dfrac{1}{n} - \gamma=H_n - \gamma,$$ where $\psi$ denotes the digamma function and $\gamma$ denotes the Euler-Mascheroni constant, and $H_n$ is the $n$th harmonic number.
Proof
References
- 1953: Harry Bateman: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.7 (9)$
- 1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $6.3.2$