Derivative of arccsc
From specialfunctionswiki
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccsc}(z) = \dfrac{-1}{z\sqrt{z^2-1}},$$ where $\mathrm{arccsc}$ denotes the inverse cosecant.
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccsc}(z) = \dfrac{-1}{z\sqrt{z^2-1}},$$ where $\mathrm{arccsc}$ denotes the inverse cosecant.