Antiderivative of arctanh
From specialfunctionswiki
Theorem
The following formula holds: $$\displaystyle\int \mathrm{arctanh}(z) \mathrm{d}z = \dfrac{\log(1-z^2)}{2} + z \mathrm{arctanh}(z) + C,$$ where $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent.