Q-shifted factorial

From specialfunctionswiki
Revision as of 02:54, 21 December 2016 by Tom (talk | contribs)
Jump to: navigation, search

The $q$-shifted factorial $(a;q)_n$ is defined for $a,q \in \mathbb{C}$ by $(a;q)_0=1$ and for $n=1,2,3,\ldots$, by $$\displaystyle\prod_{k=0}^{n-1} 1-aq^{k-1}=(1-a)(1-aq)(1-aq^2)\ldots(1-aq^{n-1}).$$

Properties

References