Gamma

From specialfunctionswiki
Revision as of 05:15, 27 July 2014 by Tom (talk | contribs)
Jump to: navigation, search

The gamma function is the function defined by the integral (initially for positive values of $x$) $$\Gamma(x)=\displaystyle\int_0^{\infty} x^{t-1}e^{-x} dx.$$

Properties

Theorem: $\Gamma(x+1)=x\Gamma(x); x>0$

Proof: proof goes here █

Theorem: If $x \in \mathbb{N}$, then $\Gamma(x+1)=x!$.

Proof: proof goes here █

Theorem (Legendre Duplication Formula): $$\Gamma(2x)=\dfrac{2^{2x-1}}{\sqrt{\pi}} \Gamma(x)\Gamma \left( x +\dfrac{1}{2} \right).$$

Proof: proof goes here █

Proposition: If $z=0,-1,-2,\ldots$ then $\Gamma(z)=\infty$.

Proof: proof goes here █

Theorem: The following relationship between $\Gamma$ and the $\sin$ function holds: $$\Gamma(x)\Gamma(1-x) = \dfrac{\pi}{\sin(\pi x)}.$$

Proof: proof goes here █