Q-zeta
From specialfunctionswiki
The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ where $[k]$ denotes a $q$-number.
The $q$-zeta function $\zeta_q \colon \mathbb{C} \times (0,1] \rightarrow \mathbb{C}$ by $$\zeta_q(z,x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{q^{-k}}{(q^{-k}[k]+x)^z},$$ where $[k]$ denotes a $q$-number.