Dedekind eta
From specialfunctionswiki
Let $q=e^{2\pi i \tau}$. We define the Dedekind eta function by the formula $$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \displaystyle\prod_{n=1}^{\infty} (1-q^n).$$
Properties
eta(z+1)=e^(i pi/12)eta(z)
eta(-1/z)=sqrt(-iz)eta(z)
References
A collection of over 6200 identities for the Dedekind Eta Function