B(x,y)B(x+y,z)=B(y,z)B(y+z,x)
From specialfunctionswiki
Theorem
The following formula holds: $$B(x,y)B(x+y,z)=B(y,z)B(y+z,x),$$ where $B$ denotes the beta function.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.5 (7)$