The Fransén–Robinson constant is defined to be the number $F$ given by the formula $$F = \displaystyle\int_0^{\infty} \dfrac{1}{\Gamma(x)} dx.$$
Proposition (Relation to $e$ and $\pi$): $F=e+\displaystyle\int_0^{\infty} \dfrac{e^{-x}}{\pi^2+\log(x)^2}.$
Proof: proof goes here █