F(n+1)F(n-1)-F(n)^2=(-1)^n
From specialfunctionswiki
Theorem
The following formula holds: $$F(n+1)F(n-1)-F(n)^2=(-1)^n,$$ where $F(n)$ denotes a Fibonacci number.
The following formula holds: $$F(n+1)F(n-1)-F(n)^2=(-1)^n,$$ where $F(n)$ denotes a Fibonacci number.