Matrix exponential
From specialfunctionswiki
The $n$-dimensional matrix exponential $\exp_n \colon \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is defined by $$\exp_n(X)=\displaystyle\sum_{k=0}^{\infty} \dfrac{X^k}{k!}.$$
Properties
References
- 2008: Nicholas Higham: Functions of Matrices: Theory and Computation ... (previous) ... (next): $(10.1)$