Sum of divisors functions written in terms of partition function

From specialfunctionswiki
Jump to: navigation, search

Theorem

The following formula holds: $$\sigma_1(n)=p(n)+\displaystyle\sum_{1 \leq \frac{3k^2 \pm k}{2} \leq n} (-1)^k\dfrac{3k^2 \pm k}{2} p \left(n - \dfrac{3k^2 \pm k}{2} \right),$$ where $\sigma_1$ denotes the sum of divisors function and $p$ denotes the partition function.

Proof

References