Difference between revisions of "Arccos"

From specialfunctionswiki
Jump to: navigation, search
Line 39: Line 39:
 
=References=
 
=References=
 
[http://mathworld.wolfram.com/InverseCosine.html  Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html]
 
[http://mathworld.wolfram.com/InverseCosine.html  Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html]
 +
 +
=See Also=
 +
[[Cosine]] <br />
 +
[[Cosh]] <br />
 +
[[Arccosh]]
  
 
<center>{{:Inverse trigonometric functions footer}}</center>
 
<center>{{:Inverse trigonometric functions footer}}</center>

Revision as of 18:36, 11 November 2015

The function $\mathrm{arccos} \colon [-1,1] \longrightarrow [0,\pi]$ is the inverse function of the cosine function.

Properties

Proposition: $\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}}$

Proof: If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use implicit differentiation with respect to $z$ to get $$-\sin(\theta)\theta'=1.$$ The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$:

Sin(arccos(z)).png

Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula
$$\dfrac{d}{dz} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$

Proposition: $\displaystyle\int \mathrm{arccos}(z) dz = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C$

Proof:

Proposition: $\mathrm{arccos}(z)=\mathrm{arcsec} \left( \dfrac{1}{z} \right)$

Proof:

References

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html

See Also

Cosine
Cosh
Arccosh

<center>Inverse trigonometric functions
</center>