Difference between revisions of "Arcsec"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 6: Line 6:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
{{:Derivative of arcsec}}
<strong>Proposition:</strong>
 
$$\dfrac{d}{dz} \mathrm{arcsec}(z) = -\dfrac{1}{\sqrt{z^2-1}|z|}$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=See Also=
 
=See Also=

Revision as of 23:08, 15 May 2016

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsec}(z) = \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}},$$ where $\mathrm{arcsec}$ is the inverse secant function.

Proof

If $\theta=\mathrm{arcsec}(z)$ then $\sec(\theta)=z$. Now use implicit differentiation with respect to $z$ and the derivative of secant to see $$\sec(\theta)\tan(\theta) \theta' = 1,$$ or equivalently, $$\dfrac{\mathrm{d}\theta}{\mathrm{d}z} = \dfrac{1}{\sec(\theta)\tan(\theta)} = \dfrac{1}{z\tan(\theta)}.$$ The following image shows that $\tan(\mathrm{arcsec}(z))=\sqrt{z^2-1}$:

Tan(arcsec(z)).png

Hence substituting back in $\theta=\mathrm{arcsec}(z)$ yields the formula $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsec}(z) = \dfrac{1}{z\tan(\mathrm{arcsec}(z))} = \dfrac{1}{z\sqrt{z^2-1}}=\dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}},$$ as was to be shown.

References

See Also

Secant
Sech
Arcsech

<center>Inverse trigonometric functions
</center>