Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 9: Line 9:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Derivative of arcsin}}
<strong>Proposition:</strong>
 
$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> If $\theta=\mathrm{arcsin}(z)$ then $\sin(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
 
$$\cos(\theta)\theta'=1.$$
 
The following image shows that $\cos(\mathrm{arcsin}(z))=\sqrt{1-z^2}$:
 
[[File:Cos(arcsin(z)).png|200px|center]]
 
Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █$$
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 21:14, 15 May 2016

The function $\mathrm{arcsin} \colon [-1,1] \rightarrow \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ is the inverse function of the sine function.

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}},$$ where $\arcsin$ denotes the inverse sine function.

Proof

If $\theta=\mathrm{arcsin}(z)$ then $\sin(\theta)=z$. Now use implicit differentiation with respect to $z$ and the derivative of sine to get $$\cos(\theta)\theta'=1,$$ or equivalently $$\dfrac{\mathrm{d}\theta}{\mathrm{d}z} = \dfrac{1}{\cos(\theta)}.$$ The following image shows that $\cos(\mathrm{arcsin}(z))=\sqrt{1-z^2}$:

Cos(arcsin(z)).png

Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}},$$ as was to be shown. █

References

Proposition: $\displaystyle\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$

Proof:

Proposition: $\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$

Proof:

Proposition: $\mathrm{arcsin}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$

Proof:

Relationship between arcsin and hypergeometric 2F1

Videos

Inverse Trig Functions: Arcsin
Integrate x*arcsin(x)
What is arcsin(x)?
What is the inverse of arcsin(ln(x))?

See Also

Sine
Sinh
Arcsinh

References

<center>Inverse trigonometric functions
</center>