Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
(Videos)
 
(38 intermediate revisions by the same user not shown)
Line 1: Line 1:
The $\mathrm{arcsin}$ function is the inverse function of the [[sine]] function. <br />
+
__NOTOC__
[[File:Arcsin.png|500px]]
+
The function $\mathrm{arcsin} \colon \mathbb{C} \setminus \left\{ (-\infty,-1) \bigcup (1,\infty) \right\} \rightarrow \mathbb{C}$ is defined by
 +
$$\rm{arcsin}(z)=-i \log \left( iz + \sqrt{1-z^2} \right),$$
 +
where $i$ denotes the [[imaginary number]] and $\log$ denotes the [[logarithm]]. <br />
  
[[File:Complex arcsin.jpg|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Arcsinplot.png|Graph of $\mathrm{arcsin}$ on $[-1,1]$.
 +
File:Complexarcsinplot.png|[[Domain coloring]] of $\mathrm{arcsin}$.
 +
</gallery>
 +
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Arcsin as inverse sine]]<br />
<strong>Proposition:</strong>  
+
[[Derivative of arcsin]]<br />
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{1-z^2}$$
+
[[Antiderivative of arcsin]] <br />
<div class="mw-collapsible-content">
+
[[Relationship between arcsin and arccsc]] <br />
<strong>Proof:</strong>
+
[[2F1(1/2,1/2;3/2;z^2)=arcsin(z)/z]]<br />
</div>
+
 
</div>
+
=Videos=
 +
[https://www.youtube.com/watch?v=JGU74wbZMLg Inverse Trig Functions: Arcsin (1 October 2009)]<br />
 +
[https://www.youtube.com/watch?v=JZ9Ku1TTeA4 What is arcsin(x)? (18 August 2011)]<br />
 +
[https://www.youtube.com/watch?v=KmHD7CsOw5Y Integrate x*arcsin(x) (25 February 2013)]<br />
 +
[https://www.youtube.com/watch?v=4CY7RIUhs2s What is the inverse of arcsin(ln(x))? (28 April 2014)]<br />
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
=See Also=
<strong>Proposition:</strong>
+
[[Sine]] <br />
$$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$
+
[[Sinh]] <br />
<div class="mw-collapsible-content">
+
[[Arcsinh]]
<strong>Proof:</strong>
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
=References=
<strong>Proposition:</strong>
+
*[http://mathworld.wolfram.com/InverseSine.html  Weisstein, Eric W. "Inverse Sine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseSine.html]<br />
$$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$
+
[http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=PPN600494829_0015%7CLOG_0028 On the function arc sin(x+iy)-Cayley]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
{{:Inverse trigonometric functions footer}}
<strong>Proposition:</strong>
 
$$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
</div>
 
  
=References=
+
[[Category:SpecialFunction]]
*[http://mathworld.wolfram.com/InverseSine.html  Weisstein, Eric W. "Inverse Sine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseSine.html]
 

Latest revision as of 23:45, 22 December 2016

The function $\mathrm{arcsin} \colon \mathbb{C} \setminus \left\{ (-\infty,-1) \bigcup (1,\infty) \right\} \rightarrow \mathbb{C}$ is defined by $$\rm{arcsin}(z)=-i \log \left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.

Properties

Arcsin as inverse sine
Derivative of arcsin
Antiderivative of arcsin
Relationship between arcsin and arccsc
2F1(1/2,1/2;3/2;z^2)=arcsin(z)/z

Videos

Inverse Trig Functions: Arcsin (1 October 2009)
What is arcsin(x)? (18 August 2011)
Integrate x*arcsin(x) (25 February 2013)
What is the inverse of arcsin(ln(x))? (28 April 2014)

See Also

Sine
Sinh
Arcsinh

References

On the function arc sin(x+iy)-Cayley

Inverse trigonometric functions