Difference between revisions of "Asymptotic behavior of Sievert integral"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$S(x,\theta) \sim \sqrt{ \dfrac{\pi}{2x} } e^{-x} \mathrm{erf} \left( \sqrt{\dfrac{x}{2}} \theta \right),$$ where $S$ denotes the ...")
 
 
(One intermediate revision by the same user not shown)
Line 7: Line 7:
  
 
==References==
 
==References==
{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Minkowski's inequality for integrals|next=Sum rule for derivatives}}: $27.4.1$
+
{{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Relationship between Sievert integral and exponential integral E}}: $27.4.1$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 02:08, 21 December 2016

Theorem

The following formula holds: $$S(x,\theta) \sim \sqrt{ \dfrac{\pi}{2x} } e^{-x} \mathrm{erf} \left( \sqrt{\dfrac{x}{2}} \theta \right),$$ where $S$ denotes the Sievert integral, $\pi$ denotes pi, $e^{-x}$ denotes the exponential, and $\mathrm{erf}$ denotes the error function.

Proof

References

1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next): $27.4.1$