Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
The hyperbolic cosine integral $\mathrm{Chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula
+
The hyperbolic cosine integral $\mathrm{Chi}$ is defined for $|\mathrm{arg}(z)| < \pi$ the formula
$$\mathrm{Chi}(z)=-\displaystyle\int_z^{\infty} \dfrac{\mathrm{cosh}(t)}{t} \mathrm{d}t,$$
+
$$\mathrm{Chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\cosh(t)-1}{t} \mathrm{d}t,$$
where $\cosh$ denotes the [[cosh|hyperbolic cosine]].
+
where $\gamma$ denotes the [[Euler-Mascheroni constant]], $\log$ denotes the [[logarithm]], and  $\cosh$ denotes the [[cosh|hyperbolic cosine]].
  
 
<div align="center">
 
<div align="center">

Latest revision as of 23:57, 10 December 2016

The hyperbolic cosine integral $\mathrm{Chi}$ is defined for $|\mathrm{arg}(z)| < \pi$ the formula $$\mathrm{Chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\cosh(t)-1}{t} \mathrm{d}t,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\cosh$ denotes the hyperbolic cosine.

Properties

Derivative of chi
Antiderivative of chi

$\ast$-integral functions