Difference between revisions of "Cosine"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 13: Line 13:
 
{{:Derivative of cosine}}
 
{{:Derivative of cosine}}
 
{{:Taylor series of cosine}}
 
{{:Taylor series of cosine}}
 
+
{{:Weierstrass factorization of cosine}}
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong> $\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right)$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<center>{{:Trigonometric functions footer}}</center>
 
<center>{{:Trigonometric functions footer}}</center>

Revision as of 05:01, 20 March 2015

The cosine function, $\cos \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by the formula $$\cos(z)=\dfrac{e^{iz}-e^{-iz}}{2},$$ where $e^z$ is the exponential function.

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) = -\sin(z),$$ where $\cos$ denotes the cosine and $\sin$ denotes the sine.

Proof

From the definition of cosine, $$\cos(z) = \dfrac{e^{iz}+e^{-iz}}{2},$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, the reciprocal of i, and the definition of the sine function, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \cos(z) &= \dfrac{1}{2} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] + \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ &= \dfrac{1}{2} \left[ ie^{iz} - ie^{-iz} \right] \\ &= -\dfrac{e^{iz}-e^{-iz}}{2i} \\ &= -\sin(z), \end{array}$$ as was to be shown. █

References

Theorem

Let $z_0 \in \mathbb{C}$. The following Taylor series holds for all $z \in \mathbb{C}$: $$\cos(z)= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k z^{2k}}{(2k)!},$$ where $\cos$ denotes the cosine function.

Proof

Using the Taylor series of the exponential function and the definition of $\cos$, $$\begin{array}{ll} \cos(z) &= \dfrac{e^{iz}+e^{-iz}}{2} \\ &= \dfrac{1}{2} \left[ \displaystyle\sum_{n=0}^{\infty} \dfrac{i^n (z-z_0)^n}{n!} + \displaystyle\sum_{n=0}^{\infty} \dfrac{(-1)^n i^n (z-z_0)^n}{n!} \right] \\ &= \dfrac{1}{2} \displaystyle\sum_{n=0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1+(-1)^n). \end{array}$$ Note that if $n=2k$ is a positive even integer, then $$i^n(1+(-1)^n)=i^{2k}(1+(-1)^{2k})=2(-1)^k,$$ and if $n=2k+1$ is a positive odd integer, then $$i^n(1+(-1)^n)=i^{2k+1}(1+(-1)^{2k+1})=0.$$ Hence we have derived $$\begin{array}{ll} \cos(z)&=\dfrac{1}{2} \displaystyle\sum_{n=0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1+(-1)^n) \\ &=\dfrac{1}{2} \displaystyle\sum_{n \mathrm{\hspace{2pt} even},n>0}^{\infty} \dfrac{(z-z_0)^n}{n!}i^n (1-(-1)^n) \\ &= \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k (z-z_0)^{2k}}{(2k)!}, \end{array}$$ as was to be shown. █

References

Theorem

The Weierstrass factorization of $\cos(x)$ is $$\cos(x) = \displaystyle\prod_{k=1}^{\infty} \left( 1 - \dfrac{4x^2}{\pi^2 (2k-1)^2} \right).$$

Proof

References

<center>Trigonometric functions
</center>