Difference between revisions of "Derivative of arccos"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{...")
 
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Derivative of arccos|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$
 
where $\mathrm{arccos}$ denotes the [[arccos|inverse cosine]] function.
 
where $\mathrm{arccos}$ denotes the [[arccos|inverse cosine]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
+
==Proof==
 +
If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
 
$$-\sin(\theta)\theta'=1.$$
 
$$-\sin(\theta)\theta'=1.$$
 
The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$: <br />
 
The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$: <br />
Line 10: Line 11:
 
Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula <br />
 
Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula <br />
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 07:29, 8 June 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sqrt{1-z^2}},$$ where $\mathrm{arccos}$ denotes the inverse cosine function.

Proof

If $\theta=\mathrm{arccos}(z)$ then $\cos(\theta)=z$. Now use implicit differentiation with respect to $z$ to get $$-\sin(\theta)\theta'=1.$$ The following image shows that $\sin(\mathrm{arccos}(z))=\sqrt{1-z^2}$:

Sin(arccos(z)).png

Hence substituting back in $\theta=\mathrm{arccos}(z)$ yields the formula
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos}(z) = -\dfrac{1}{\sin(\mathrm{arccos}(z))} = -\dfrac{1}{\sqrt{1-z^2}}.█$$

References