Difference between revisions of "Dirichlet beta in terms of Lerch transcendent"

From specialfunctionswiki
Jump to: navigation, search
(Proof)
(Proof)
 
Line 5: Line 5:
  
 
==Proof==
 
==Proof==
Starting from the Hadamard Fractional Integral representations of the Lerch Transcendent and the Dirichlet Beta functions, namely,
+
Starting from the series representations of the Lerch Transcendent and the Dirichlet Beta functions, namely,
  
 
$$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$
 
$$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$
Line 11: Line 11:
 
and
 
and
  
$$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}$$
+
$$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}.$$
 +
 
 +
We have
  
 
$$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$,
 
$$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$,

Latest revision as of 12:03, 30 March 2022

Theorem

The following formula holds: $$\beta(x) = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\beta$ denotes Dirichlet beta and $\Phi$ denotes the Lerch transcendent.

Proof

Starting from the series representations of the Lerch Transcendent and the Dirichlet Beta functions, namely,

$$\Phi (z,\alpha ,y) = \sum_{k=0}^\infty\tfrac{z^k}{(y+k)^\alpha},$$

and

$$\beta (\alpha ) = \sum_{k=0}^\infty \tfrac{(-1)^k}{(2k+1)^\alpha}.$$

We have

$$2^{-\alpha } \Phi \left(-1,\alpha ,\dfrac{1}{2} \right) = 2^{-\alpha } \sum_{k=0}^\infty\tfrac{(-1)^k}{\left( \dfrac{1}{2}+k\right) ^\alpha} = \beta(\alpha )$$,

and the proof is demonstrated.

References