Difference between revisions of "Ei(x)=-Integral from -x to infinity of e^(-t)/t dt"

From specialfunctionswiki
Jump to: navigation, search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds:
+
The following formula holds for $x>0$:
$$\mathrm{Ei}(-x) = -\displaystyle\int_{-x}^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t,$$
+
$$\mathrm{Ei}(x) = \mathrm{PV} -\displaystyle\int_{-x}^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t,$$
where $\mathrm{Ei}$ denotes the [[exponential integral Ei]] and $e^{-t}$ denotes the [[exponential]].
+
where $\mathrm{Ei}$ denotes the [[exponential integral Ei]], $\mathrm{PV}$ denotes the [[Cauchy principal value]], and $e^{-t}$ denotes the [[exponential]].
  
 
==Proof==
 
==Proof==
Line 8: Line 8:
 
==References==
 
==References==
 
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|prev=Exponential integral Ei|next=Exponential integral Ei series}}
 
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|prev=Exponential integral Ei|next=Exponential integral Ei series}}
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Logarithmic integral}}: $5.1.2$ (<i>note: this reference writes this formula with $\mathrm{Ei}(x)$ instead of $\mathrm{Ei}(-x)$</i>)
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Exponential integral Ei}}: $5.1.2$ (<i>note: this reference writes this formula with $\mathrm{Ei}(x)$ instead of $\mathrm{Ei}(-x)$</i>)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 00:48, 24 March 2018

Theorem

The following formula holds for $x>0$: $$\mathrm{Ei}(x) = \mathrm{PV} -\displaystyle\int_{-x}^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t,$$ where $\mathrm{Ei}$ denotes the exponential integral Ei, $\mathrm{PV}$ denotes the Cauchy principal value, and $e^{-t}$ denotes the exponential.

Proof

References