Difference between revisions of "Euler E"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
__NOTOC__
 
The Euler polynomials $E_n(x)$ are [[orthogonal polynomials]] defined by
 
The Euler polynomials $E_n(x)$ are [[orthogonal polynomials]] defined by
 
$$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$
 
$$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$
Line 10: Line 11:
  
 
=Properties=
 
=Properties=
 +
[[Euler E generating function]]<br />
 +
[[Euler E n'(x)=nE n-1(x)]]<br />
 +
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
$$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$
+
$$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$
where $e^{xt}$ denotes the [[exponential function]] and $E_n$ denotes an [[Euler E]] polynomial.
 
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong>  
+
<strong>Proof:</strong>
 
</div>
 
</div>
 
</div>
 
</div>
Line 21: Line 24:
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 01:05, 4 March 2018

The Euler polynomials $E_n(x)$ are orthogonal polynomials defined by $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ where $e_k$ denotes an Euler number.

  • $E_0(x)=1$
  • $E_1(x)=x-\dfrac{1}{2}$
  • $E_2(x)=x^2-x$
  • $E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$
  • $E_4(x)=x^4-2x^3+x$

Properties

Euler E generating function
Euler E n'(x)=nE n-1(x)

Theorem: The following formula holds: $$E_n(x+y)=\displaystyle\sum_{k=0}^n {n \choose k} E_k(x)y^k.$$

Proof:


Orthogonal polynomials