Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 14: Line 14:
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Proposition:</strong> The following series representation holds for $\mathrm{Ei}$:
+
<strong>Theorem:</strong> The exponential integral $\mathrm{Ei}$ has series representation
$$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0.$$
+
$$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0,$$
 +
where $\gamma$ denotes the [[Euler-Mascheroni constant]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The exponential integral $E_1$ has series representation
 +
$$E_1(z)=-\gamma-\log z - \displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^kz^k}{kk!}; |\mathrm{arg}(z)|<\pi,$$
 +
where $\gamma$ denotes the [[Euler-Mascheroni constant]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  

Revision as of 01:40, 2 February 2015

The exponential integrals are $$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} dt; |\mathrm{arg}(-z)|<\pi,$$ $$E_1(z) = \displaystyle\int_z^{\infty} \dfrac{e^{-t}}{t}dt;|\mathrm{arg \hspace{2pt}}z<\pi|,$$ and $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} dt.$$

Properties

Proposition: The exponential integral $\mathrm{Ei}$ is related to the logarithmic integral by the formula $$\mathrm{li}(x)=\mathrm{Ei}( \log(x)); n=0,1,2,\ldots, \mathrm{Re}(z)>0$$

Proof:

Theorem: The exponential integral $\mathrm{Ei}$ has series representation $$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0,$$ where $\gamma$ denotes the Euler-Mascheroni constant.

Proof:

Theorem: The exponential integral $E_1$ has series representation $$E_1(z)=-\gamma-\log z - \displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^kz^k}{kk!}; |\mathrm{arg}(z)|<\pi,$$ where $\gamma$ denotes the Euler-Mascheroni constant.

Proof:

Videos

Laplace transform of exponential integral

References

Exponential Integral and Related Functions