Difference between revisions of "Exponential integral E"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(38 intermediate revisions by the same user not shown)
Line 1: Line 1:
The exponential integrals are
+
__NOTOC__
$$\mathrm{Ei}(z) = \int_{-\infty}^x \dfrac{e^t}{t} dt; |\mathrm{arg}(-z)|<\pi,$$
+
The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ and $n=1,2,3,\ldots$ by
$$E_1(z) = \displaystyle\int_z^{\infty} \dfrac{e^{-t}}{t}dt;|\mathrm{arg \hspace{2pt}}z<\pi|,$$
+
$$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$
and
 
$$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} dt.$$
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Proposition:</strong> The exponential integral $\mathrm{Ei}$ is related to the [[logarithmic integral]] by the formula
 
$$\mathrm{li}(x)=\mathrm{Ei}( \log(x)); n=0,1,2,\ldots, \mathrm{Re}(z)>0$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
<div align="center">
<strong>Theorem:</strong> The exponential integral $\mathrm{Ei}$ has series representation
+
<gallery>
$$\mathrm{Ei}(x) = \gamma + \log x + \displaystyle\sum_{k=1}^{\infty} \dfrac{x^k}{kk!}; x>0,$$
+
File:E1plot.png|Graph of $\mathrm{E}_1$.
where $\gamma$ denotes the [[Euler-Mascheroni constant]].
+
File:E2plot.png|Graph of $\mathrm{E}_2$.
<div class="mw-collapsible-content">
+
File:E3plot.png|Graph of $\mathrm{E}_3$.
<strong>Proof:</strong> █
+
File:Complexe1plot.png|[[Domain coloring]] of $\mathrm{E}_1$.
</div>
+
File:Complexe2plot.png|[[Domain coloring]] of $\mathrm{E}_2$.
 +
</gallery>
 
</div>
 
</div>
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=Properties=
<strong>Theorem:</strong> The exponential integral $E_1$ has series representation
+
[[Relationship between the exponential integral and upper incomplete gamma function]]<br />
$$E_1(z)=-\gamma-\log z - \displaystyle\sum_{k=1}^{\infty} \dfrac{(-1)^kz^k}{kk!}; |\mathrm{arg}(z)|<\pi,$$
+
[[Symmetry relation of exponential integral E]]<br />
where $\gamma$ denotes the [[Euler-Mascheroni constant]].
+
[[Recurrence relation of exponential integral E]]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=Videos=
<strong>Theorem (Symmetry):</strong> The following symmetry relation holds:
+
[https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral (2 January 2015)]<br />
$$E_n(\overline{z})=\overline{E_n(z)}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=See Also=
<strong>Theorem (Recurrence):</strong> The following recurrence holds:
+
[[Exponential integral Ei]]
$$E_{n+1}(z) = \dfrac{1}{n}[e^{-z}-zE_n(z)];(n=1,2,3,\ldots).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
=References=
<strong>Theorem ([[Continued fraction]]):</strong> The following formula holds:
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Ei(-x)=-Integral from -x to infinity of e^(-t)/t dt}}: $5.1.1$ (<i>note: this formula only defines it for $n=1$</i>)
$$E_n(z)=e^{-z} \left( \dfrac{1}{z+} \dfrac{n}{1+} \dfrac{1}{z+} \dfrac{n+1}{1+} \dfrac{2}{z+} \ldots \right); |\mathrm{arg} z|<\pi.$$
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=findme}}: $5.1.4$ (<i>note:</i> this formula defines it for $n=0,1,2,\ldots$)
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following value is known:
 
$$E_n(0)=\dfrac{1}{n-1}; n>1.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following closed form expression is known:
 
$$E_0(z)=\dfrac{e^{-z}}{z}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem (Derivative):</strong> $$\dfrac{d}{dz} E_n(z) = -E_{n-1}(z); n=1,2,3,\ldots$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:*-integral functions footer}}
<strong>Theorem (Relation to incomplete gamma):</strong> The following formula holds:
 
$$E_n(z)=z^{n-1}\Gamma(1-n,z),$$
 
where $\Gamma$ denotes the [[incomplete gamma function]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
=Videos=
+
[[Category:SpecialFunction]]
[https://www.youtube.com/watch?v=TppV_yDY3EQ Laplace transform of exponential integral]<br />
 
 
 
=References=
 
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_228.htm Exponential Integral and Related Functions]
 

Latest revision as of 00:45, 24 March 2018

The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ and $n=1,2,3,\ldots$ by $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$

Properties

Relationship between the exponential integral and upper incomplete gamma function
Symmetry relation of exponential integral E
Recurrence relation of exponential integral E

Videos

Laplace transform of exponential integral (2 January 2015)

See Also

Exponential integral Ei

References

$\ast$-integral functions