Difference between revisions of "Gegenbauer C"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Gegenbauer polynomial of degree $n$ and order $\lambda$ is the coefficient of $t^n$ in the expansion of $\dfrac{1}{(1-2xt+t^2)^{\lambda}}$ in the sense that $$\dfrac{1}{(...")
 
(Properties)
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Gegenbauer polynomial of degree $n$ and order $\lambda$ is the coefficient of $t^n$ in the expansion of
+
The Gegenbauer polynomial $C_n^{\lambda}$ of degree $n \in \{0,1,2,\ldots\}$ and order $\lambda$ defined by
$\dfrac{1}{(1-2xt+t^2)^{\lambda}}$ in the sense that
+
$$C_n^{\lambda}(x)=\displaystyle\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \dfrac{(-1)^k\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k},$$
$$\dfrac{1}{(1-2xt+t^2)^{\lambda}} = \sum_{k=0}^{\infty} C_k^{\lambda}(x)t^k.$$
+
where $\left\lfloor \frac{n}{2} \right\rfloor$ denotes the [[floor]] function, $\Gamma$ denotes [[gamma]], and $k!$ denotes the [[factorial]].
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Orthogonality of Gegenbauer C on (-1,1)]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[(n+2)C_(n+2)^(lambda)(x)=2(lambda+n+1)xC_(n+1)^(lambda)(x)-(2lambda+n)C_n^(lambda)(x)]]<br />
$$C_n^{\lambda}(x) = \displaystyle\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \dfrac{\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k}.$$
+
[[nC_n^(lambda)(x)=2lambda(xC_(n-1)^(lambda+1)(x)-C_(n-2)^(lambda+1)(x))]]<br />
<div class="mw-collapsible-content">
+
[[(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))]]<br />
<strong>Proof:</strong>
+
[[nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)]]<br />
</div>
+
[[C_n^(lambda)'(x)=2lambda C_(n+1)^(lambda+1)(x)]]<br />
</div>
+
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
 +
[[Relationship between Chebyshev T and Gegenbauer C]]<br />
 +
[[Relationship between Chebyshev U and Gegenbauer C]]<br />
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
{{:Orthogonal polynomials footer}}
<strong>Theorem (Orthogonality):</strong> The following formula holds:
+
 
$$\displaystyle\int_{-1}^1 (1-x^2)^{\lambda-\frac{1}{2}} C_n^{\lambda}(x)C_m^{\lambda}(x) dx = 2^{1-2\lambda} \pi \dfrac{\Gamma(n+2\lambda)}{(n+\lambda)(\Gamma(\lambda))^2\Gamma(n+1)}\delta_{mn},$$
+
[[Category:SpecialFunction]]
where $\delta_{mn}=0$ if $m\neq 0$ and $\delta_{mn}=1$ when $m=n$.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 

Latest revision as of 01:29, 20 December 2017

The Gegenbauer polynomial $C_n^{\lambda}$ of degree $n \in \{0,1,2,\ldots\}$ and order $\lambda$ defined by $$C_n^{\lambda}(x)=\displaystyle\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \dfrac{(-1)^k\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k},$$ where $\left\lfloor \frac{n}{2} \right\rfloor$ denotes the floor function, $\Gamma$ denotes gamma, and $k!$ denotes the factorial.

Properties

Orthogonality of Gegenbauer C on (-1,1)
(n+2)C_(n+2)^(lambda)(x)=2(lambda+n+1)xC_(n+1)^(lambda)(x)-(2lambda+n)C_n^(lambda)(x)
nC_n^(lambda)(x)=2lambda(xC_(n-1)^(lambda+1)(x)-C_(n-2)^(lambda+1)(x))
(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))
nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)
C_n^(lambda)'(x)=2lambda C_(n+1)^(lambda+1)(x)
Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials
Relationship between Chebyshev T and Gegenbauer C
Relationship between Chebyshev U and Gegenbauer C

Orthogonal polynomials