Difference between revisions of "Gegenbauer C"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The Gegenbauer polynomial $C_n^{\lambda}$ of degree $n \in \{0,1,2,\ldots\}$ and order $\lambda$ defined by
 
The Gegenbauer polynomial $C_n^{\lambda}$ of degree $n \in \{0,1,2,\ldots\}$ and order $\lambda$ defined by
$$C_n^{\lambda}(z)=\displaystyle\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \dfrac{(-1)^k\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2z)^{n-2k},$$
+
$$C_n^{\lambda}(x)=\displaystyle\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \dfrac{(-1)^k\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k},$$
 
where $\left\lfloor \frac{n}{2} \right\rfloor$ denotes the [[floor]] function, $\Gamma$ denotes [[gamma]], and $k!$ denotes the [[factorial]].
 
where $\left\lfloor \frac{n}{2} \right\rfloor$ denotes the [[floor]] function, $\Gamma$ denotes [[gamma]], and $k!$ denotes the [[factorial]].
  
Line 8: Line 8:
 
[[nC_n^(lambda)(x)=2lambda(xC_(n-1)^(lambda+1)(x)-C_(n-2)^(lambda+1)(x))]]<br />
 
[[nC_n^(lambda)(x)=2lambda(xC_(n-1)^(lambda+1)(x)-C_(n-2)^(lambda+1)(x))]]<br />
 
[[(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))]]<br />
 
[[(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))]]<br />
 +
[[nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)]]<br />
  
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The following formula holds:
 
$$nC_n^{\lambda}(x) = (n-1+2\lambda)xC_{n-1}^{\lambda}(x) - 2\lambda(1-x^2)C_{n-2}^{\lambda-1}(x).$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">

Revision as of 01:27, 20 December 2017

The Gegenbauer polynomial $C_n^{\lambda}$ of degree $n \in \{0,1,2,\ldots\}$ and order $\lambda$ defined by $$C_n^{\lambda}(x)=\displaystyle\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \dfrac{(-1)^k\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k},$$ where $\left\lfloor \frac{n}{2} \right\rfloor$ denotes the floor function, $\Gamma$ denotes gamma, and $k!$ denotes the factorial.

Properties

Orthogonality of Gegenbauer C on (-1,1)
(n+2)C_(n+2)^(lambda)(x)=2(lambda+n+1)xC_(n+1)^(lambda)(x)-(2lambda+n)C_n^(lambda)(x)
nC_n^(lambda)(x)=2lambda(xC_(n-1)^(lambda+1)(x)-C_(n-2)^(lambda+1)(x))
(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))
nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)


Theorem: The following formula holds: $$C_n^{\lambda '}(x) = 2\lambda C_{n+1}^{\lambda+1}(x).$$

Proof:

Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials
Relationship between Chebyshev T and Gegenbauer C
Relationship between Chebyshev U and Gegenbauer C

Orthogonal polynomials