Difference between revisions of "Gegenbauer C"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
Line 9: Line 9:
 
[[(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))]]<br />
 
[[(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))]]<br />
 
[[nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)]]<br />
 
[[nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)]]<br />
[[d/dx[C_n^(lambda)(x)]=2lambda C_(n+1)^(lambda+1)(x)]]<br />
+
[[C_n^(lambda)'(x)=2lambda C_(n+1)^(lambda+1)(x)]]<br />
 
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
 
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
 
[[Relationship between Chebyshev T and Gegenbauer C]]<br />
 
[[Relationship between Chebyshev T and Gegenbauer C]]<br />

Latest revision as of 01:29, 20 December 2017

The Gegenbauer polynomial $C_n^{\lambda}$ of degree $n \in \{0,1,2,\ldots\}$ and order $\lambda$ defined by $$C_n^{\lambda}(x)=\displaystyle\sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \dfrac{(-1)^k\Gamma(n-k+\lambda)}{\Gamma(\lambda)k!(n-2k)!} (2x)^{n-2k},$$ where $\left\lfloor \frac{n}{2} \right\rfloor$ denotes the floor function, $\Gamma$ denotes gamma, and $k!$ denotes the factorial.

Properties

Orthogonality of Gegenbauer C on (-1,1)
(n+2)C_(n+2)^(lambda)(x)=2(lambda+n+1)xC_(n+1)^(lambda)(x)-(2lambda+n)C_n^(lambda)(x)
nC_n^(lambda)(x)=2lambda(xC_(n-1)^(lambda+1)(x)-C_(n-2)^(lambda+1)(x))
(n+2lambda)C_n^(lambda)(x)=2lambda(C_n^(lambda+1)(x)-xC_(n-1)^(lambda+1)(x))
nC_n^(lambda)(x)=(n-1+2lambda)xC_(n-1)^(lambda)(x)-2lambda(1-x^2)C_(n-2)^(lambda-1)(x)
C_n^(lambda)'(x)=2lambda C_(n+1)^(lambda+1)(x)
Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials
Relationship between Chebyshev T and Gegenbauer C
Relationship between Chebyshev U and Gegenbauer C

Orthogonal polynomials