Difference between revisions of "Hermite (physicist)"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
The (physicist) Hermite polynomials are a sequence of [[orthogonal polynomials]] with weight function $e^{-x^2}$.  
+
The (physicist) Hermite polynomials $H_n$ are a sequence of [[orthogonal polynomials]] with weight function $w(x)=e^{-x^2}$ over $(-\infty,\infty)$.
[[File:Hermiteh(physicist).png|450px]]
+
 
 +
<div align="center">
 +
<gallery>
 +
File:Hermiteh(physicist).png|Graph of $H_n$ on $[-4,4]$.
 +
</gallery>
 +
</div>
 +
 
 +
$$\begin{array}{ll}
 +
H_0(x)=1\\
 +
H_1(x)=2x\\
 +
H_2(x)=4x^2-2\\
 +
H_3(x)=8x^3-12x\\
 +
H_4(x)=16x^4-48x^2+12\\
 +
H_5(x)=32x^5-160x^3+120x
 +
\end{array}$$
 +
 
 +
=Properties=
 +
[[Generating function for Hermite (physicist) polynomials]]<br />
 +
[[Closed formula for physicist's Hermite polynomials]]<br />
 +
[[Hermite (physicist) polynomial at negative argument]]<br />
 +
[[Recurrence relation for physicist's Hermite involving derivative of H_n, derivative of H_n-1, and H_n]]
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> (Orthogonality) Let $w(x)=e^{-x^2}$, then
 +
$$\displaystyle\int_{-\infty}^{\infty} H_n(x)H_m(x)w(x) dx=\sqrt{\pi}2^nn!\delta_{mn},$$
 +
where $H_n$ denotes the [[Hermite (physicist)|Hermite polynomials]] and $\delta_{mn}$ denotes the [[Kronecker delta]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$H_{n+1}(x)=2xH_n(x)-H_n'(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$H_n'(x)=2nH_{n-1}(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$H_{n+1}(x)=2xH_n(x)-2nH_{n-1}(x).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 00:49, 9 July 2016

The (physicist) Hermite polynomials $H_n$ are a sequence of orthogonal polynomials with weight function $w(x)=e^{-x^2}$ over $(-\infty,\infty)$.

$$\begin{array}{ll} H_0(x)=1\\ H_1(x)=2x\\ H_2(x)=4x^2-2\\ H_3(x)=8x^3-12x\\ H_4(x)=16x^4-48x^2+12\\ H_5(x)=32x^5-160x^3+120x \end{array}$$

Properties

Generating function for Hermite (physicist) polynomials
Closed formula for physicist's Hermite polynomials
Hermite (physicist) polynomial at negative argument
Recurrence relation for physicist's Hermite involving derivative of H_n, derivative of H_n-1, and H_n

Theorem: (Orthogonality) Let $w(x)=e^{-x^2}$, then $$\displaystyle\int_{-\infty}^{\infty} H_n(x)H_m(x)w(x) dx=\sqrt{\pi}2^nn!\delta_{mn},$$ where $H_n$ denotes the Hermite polynomials and $\delta_{mn}$ denotes the Kronecker delta.

Proof:

Theorem: The following formula holds: $$H_{n+1}(x)=2xH_n(x)-H_n'(x).$$

Proof:

Theorem: The following formula holds: $$H_n'(x)=2nH_{n-1}(x).$$

Proof:

Theorem: The following formula holds: $$H_{n+1}(x)=2xH_n(x)-2nH_{n-1}(x).$$

Proof:


Orthogonal polynomials