Difference between revisions of "Hermite (probabilist)"

From specialfunctionswiki
Jump to: navigation, search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
The (probabilist) Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ (sometimes denoted as $He_n$) are a sequence of [[Orthogonal polynomial|orthogonal polynomials]] with weight function $e^{-\frac{x^2}{2}}$.
 +
 +
$$\begin{array}{ll}
 +
H_0(x)=1 \\
 +
H_1(x)=x \\
 +
H_2(x)=x^2-1\\
 +
H_3(x)=x^3-3x\\
 +
H_4(x)=x^4-6x^2+3 \\
 +
\vdots
 +
\end{array}$$
 +
 +
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the [[Rodrigues' formula]]
 
<strong>Theorem:</strong> The Hermite polynomials $H_n$ satisfy the [[Rodrigues' formula]]
 
$$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$
 
$$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> proof goes here █  
+
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> ([[Generating function]]) The Hermite polynomials obey
 +
$$e^{2tx-t^2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{H_k(x)t^n}{n!}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> ([[Orthogonal |Orthogonality]]) The Hermite polynomials obey
 +
$$\displaystyle\int_{-\infty}^{\infty} e^{-x^2}H_n(x)H_m(x)dx=\left\{ \begin{array}{ll}
 +
0 &; m \neq n \\
 +
2^nn!\sqrt{\pi} &; m=n
 +
\end{array} \right..$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 +
<strong>Theorem:</strong> $H_n(x)$ is an even function for even $n$ and an odd function for odd $n$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
{{:Orthogonal polynomials footer}}
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 18:41, 24 May 2016

The (probabilist) Hermite polynomials $\{H_n\}_{n=0}^{\infty}$ (sometimes denoted as $He_n$) are a sequence of orthogonal polynomials with weight function $e^{-\frac{x^2}{2}}$.

$$\begin{array}{ll} H_0(x)=1 \\ H_1(x)=x \\ H_2(x)=x^2-1\\ H_3(x)=x^3-3x\\ H_4(x)=x^4-6x^2+3 \\ \vdots \end{array}$$

Properties

Theorem: The Hermite polynomials $H_n$ satisfy the Rodrigues' formula $$H_n(t) = (-1)^ne^{x^2}\dfrac{d^n}{dx^n}e^{-x^2}.$$

Proof:

Theorem: (Generating function) The Hermite polynomials obey $$e^{2tx-t^2} = \displaystyle\sum_{k=0}^{\infty} \dfrac{H_k(x)t^n}{n!}.$$

Proof:

Theorem: (Orthogonality) The Hermite polynomials obey $$\displaystyle\int_{-\infty}^{\infty} e^{-x^2}H_n(x)H_m(x)dx=\left\{ \begin{array}{ll} 0 &; m \neq n \\ 2^nn!\sqrt{\pi} &; m=n \end{array} \right..$$

Proof:

Theorem: $H_n(x)$ is an even function for even $n$ and an odd function for odd $n$.

Proof:

Orthogonal polynomials