Difference between revisions of "Inverse Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(11 intermediate revisions by the same user not shown)
Line 11: Line 11:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between sinh, inverse Gudermannian, and tan]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[Relationship between cosh, inverse Gudermannian, and sec]]<br />
$$\sinh(\mathrm{gd}^{-1}(x))=\tan(x),$$
+
[[Relationship between tanh, inverse Gudermannian, and sin]]<br />
where $\sinh$ is the [[sinh|hyperbolic sine]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\tan$ is the [[tangent]].
+
[[Relationship between csch, inverse Gudermannian, and cot]]<br />
<div class="mw-collapsible-content">
+
[[Relationship between sech, inverse Gudermannian, and cos]]<br />
<strong>Proof:</strong>
+
[[Relationship between coth, inverse Gudermannian, and csc]]<br />
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:*-integral functions footer}}
<strong>Theorem:</strong> The following formula holds:
 
$$\cosh(\mathrm{gd}^{-1}(x))=\sec(x),$$
 
where $\cosh$ is the [[cosh|hyperbolic cosine]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\sec$ is the [[secant]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Category:SpecialFunction]]
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{tanh}(\mathrm{gd}^{-1}(x))=\sin(x),$$
 
where $\mathrm{tanh}$ is the [[tanh|hyperbolic tangent]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\sin$ is the [[sine]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{csch}(\mathrm{gd}^{-1}(x))=\cot(x),$$
 
where $\mathrm{csch}$ is the [[csch|hyperbolic cosecant]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\cot$ is the [[cotangent]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{sech}(\mathrm{gd}^{-1}(x))=\cos(x),$$
 
where $\mathrm{sech}$ is the [[sech|hyperbolic secant]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\cos$ is the [[cosine]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
$$\mathrm{coth}(\mathrm{gd}^{-1}(x))=\csc(x),$$
 
where $\mathrm{coth}$ is the [[coth|hyperbolic cotangent]], $\mathrm{gd}^{-1}$ is the [[inverse Gudermannian]], and $\csc$ is the [[cosecant]].
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 

Latest revision as of 23:10, 11 June 2016

The inverse Gudermannian $\mathrm{gd}^{-1}$ is the inverse function of the Gudermannian function. It may be defined by the following formula for $x \in \mathbb{R}$: $$\mathrm{gd}^{-1}(x)=\displaystyle\int_0^x \dfrac{1}{\cosh(t)} dt,$$ where $\cosh$ denotes the hyperbolic cosine.

Properties

Relationship between sinh, inverse Gudermannian, and tan
Relationship between cosh, inverse Gudermannian, and sec
Relationship between tanh, inverse Gudermannian, and sin
Relationship between csch, inverse Gudermannian, and cot
Relationship between sech, inverse Gudermannian, and cos
Relationship between coth, inverse Gudermannian, and csc

$\ast$-integral functions