Difference between revisions of "Jacobi P"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Jacobi polynomial $P_n^{(\alpha,\beta)}$ is the coefficient of $t^n$ in the expansion of $$\dfrac{2^{\alpha+\beta}}{\sqrt{1-2xt+t^2}\left(1-t+ \sqrt{1-2xt+t^2} \right)^{\...")
 
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Jacobi polynomial $P_n^{(\alpha,\beta)}$ is the coefficient of $t^n$ in the expansion of
+
Let $\alpha > -1$ and $\beta > -1$. The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are [[orthogonal polynomials]] with [[weight function]] $w(x)=(1-x)^{\alpha}(1-x)^{\beta}$ on the interval $[-1,1]$ that obey $P_n^{(\alpha,\beta)}(1) = {{n + \alpha} \choose n}$.
$$\dfrac{2^{\alpha+\beta}}{\sqrt{1-2xt+t^2}\left(1-t+ \sqrt{1-2xt+t^2} \right)^{\alpha} \left(1+t+\sqrt{1-2xt+t^2} \right)^{\beta}}$$
+
$$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$
in the sense that
+
where ${}_2F_1$ is the [[Hypergeometric pFq|generalized hypergeometries series]].
$$\dfrac{2^{\alpha+\beta}}{\sqrt{1-2xt+t^2}\left(1-t+ \sqrt{1-2xt+t^2} \right)^{\alpha} \left(1+t+\sqrt{1-2xt+t^2} \right)^{\beta}} = \sum_{k=0}^{\infty} P_k^{(\alpha,\beta)}(x)t^k$$
+
 
holds.
+
=Properties=
 +
[[Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials]]<br />
 +
[[Differential equation for Jacobi P]]<br />
 +
 
 +
=References=
 +
* {{BookReference|Orthogonal Polynomials|1975|Gabor Szegő|edpage = Fourth Edition|prev=findme|next=findme}}: page 58
 +
 
 +
{{:Orthogonal polynomials footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 03:30, 11 June 2016

Let $\alpha > -1$ and $\beta > -1$. The Jacobi polynomial $P_n^{(\alpha,\beta)}$ are orthogonal polynomials with weight function $w(x)=(1-x)^{\alpha}(1-x)^{\beta}$ on the interval $[-1,1]$ that obey $P_n^{(\alpha,\beta)}(1) = {{n + \alpha} \choose n}$. $$P_n^{(\alpha,\beta)}(z)=\dfrac{(\alpha+1)^{\overline{n}}}{n!} {}_2F_1 \left(-n, 1+\alpha+\beta+n;\alpha+1; \dfrac{1}{2}(1-z) \right),$$ where ${}_2F_1$ is the generalized hypergeometries series.

Properties

Relationship between the Gegenbauer C polynomials and the Jacobi P polynomials
Differential equation for Jacobi P

References

Orthogonal polynomials