Difference between revisions of "Knopp function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $a \in (0,1), ab > 4,$ and $b>1$ an even integer. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by $$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a...")
 
Line 1: Line 1:
 
Let $a \in (0,1), ab > 4,$ and $b>1$ an even integer. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by
 
Let $a \in (0,1), ab > 4,$ and $b>1$ an even integer. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by
$$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \phi \left( b^k x \right),$$
+
$$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$
where $\phi(x)=\displaystyle\inf_{m \in \mathbb{Z}} |x-m|$.
+
where $\mathrm{dist}_{\mathbb{Z}}$ denotes the [[distance to integers]] function.
  
 
=Properties=
 
=Properties=

Revision as of 19:45, 22 January 2016

Let $a \in (0,1), ab > 4,$ and $b>1$ an even integer. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by $$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.

Properties

Theorem: The Knopp function $K_{a,b}$ is continuous on $\mathbb{R}$ for $a \in (0,1)$ and $ab>1$.

Proof:

Theorem: The Knopp function $K_{a,b}$ is nowhere differentiable on $\mathbb{R}$ for $a \in (0,1)$and $ab > 1$.

Proof:

References

[1]