Difference between revisions of "Knopp function"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
Let $a \in (0,1), ab > 4,$ and $b>1$ an even integer. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by
+
Let $a \in (0,1)$ $ab > 1$. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by
 
$$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$
 
$$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$
 
where $\mathrm{dist}_{\mathbb{Z}}$ denotes the [[distance to integers]] function.
 
where $\mathrm{dist}_{\mathbb{Z}}$ denotes the [[distance to integers]] function.

Revision as of 21:30, 22 January 2016

Let $a \in (0,1)$ $ab > 1$. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by $$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.

Properties

Theorem: The Knopp function $K_{a,b}$ is continuous on $\mathbb{R}$ for $a \in (0,1)$ and $ab>1$.

Proof:

Theorem: The Knopp function $K_{a,b}$ is nowhere differentiable on $\mathbb{R}$ for $a \in (0,1)$and $ab > 1$.

Proof:

See Also

Takagi function
van der Waerden function

References

[1]