Difference between revisions of "Legendre P"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The Legendre polynomials are [[orthogonal polynomials]] defined by the recurrence
+
The Legendre polynomials are [[orthogonal polynomials]] defined by the formula
$$P_n(x) = \dfrac{1}{2^nn!}\dfrac{d^n}{dx^n}(x^2-1)^n; n=0,1,2,\ldots$$
+
$$P_n(x) = \dfrac{1}{2^n} \displaystyle\sum_{k=0}^n {n \choose k}^2 (x-1)^{n-k}(x+1)^k.$$
 +
 
 
$$\begin{array}{ll}
 
$$\begin{array}{ll}
 
P_0(x) &= 1 \\
 
P_0(x) &= 1 \\
Line 6: Line 7:
 
P_2(x) &= \dfrac{1}{2}(3x^2-1) \\
 
P_2(x) &= \dfrac{1}{2}(3x^2-1) \\
 
P_3(x) &= \dfrac{1}{2}(5x^3-3x) \\
 
P_3(x) &= \dfrac{1}{2}(5x^3-3x) \\
 +
P_4(x) &= \dfrac{1}{8}(35x^4-30x^2+3) \\
 +
P_5(x) &= \dfrac{1}{8}(63x^5-70x^3+15x) \\
 
\vdots
 
\vdots
 
\end{array}$$
 
\end{array}$$
Line 15: Line 18:
 
</div>
 
</div>
  
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\dfrac{1}{\sqrt{1-2xt+t^2}} = \displaystyle\sum_{k=0}^{\infty} P_n(x)t^n.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> ([[Rodrigues' formula]]) The following formula holds:
 +
$$P_n(x)=\dfrac{1}{2^nn!}\dfrac{d^n}{dx^n} [(x^2-1)^n].$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> (Orthogonality) The following formula holds:
 +
$$\displaystyle\int_{-1}^1 P_m(x)P_n(x)dx = \dfrac{2}{2n+1} \delta_{mn},$$
 +
where $P_n$ denotes [[Legendre P|Legendre polynomials]] and $\delta$ denotes the [[Dirac delta]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}

Revision as of 20:27, 23 March 2015

The Legendre polynomials are orthogonal polynomials defined by the formula $$P_n(x) = \dfrac{1}{2^n} \displaystyle\sum_{k=0}^n {n \choose k}^2 (x-1)^{n-k}(x+1)^k.$$

$$\begin{array}{ll} P_0(x) &= 1 \\ P_1(x) &= x \\ P_2(x) &= \dfrac{1}{2}(3x^2-1) \\ P_3(x) &= \dfrac{1}{2}(5x^3-3x) \\ P_4(x) &= \dfrac{1}{8}(35x^4-30x^2+3) \\ P_5(x) &= \dfrac{1}{8}(63x^5-70x^3+15x) \\ \vdots \end{array}$$

Properties

Theorem: The following formula holds: $$\dfrac{1}{\sqrt{1-2xt+t^2}} = \displaystyle\sum_{k=0}^{\infty} P_n(x)t^n.$$

Proof:

Theorem: (Rodrigues' formula) The following formula holds: $$P_n(x)=\dfrac{1}{2^nn!}\dfrac{d^n}{dx^n} [(x^2-1)^n].$$

Proof:

Theorem: (Orthogonality) The following formula holds: $$\displaystyle\int_{-1}^1 P_m(x)P_n(x)dx = \dfrac{2}{2n+1} \delta_{mn},$$ where $P_n$ denotes Legendre polynomials and $\delta$ denotes the Dirac delta.

Proof:

Orthogonal polynomials