Difference between revisions of "Logarithmic derivative of Jacobi theta 2 equals negative tangent + a sum of sines"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\dfrac{\vartheta_2'(u)}{\vartheta_2(u)} = -\tan(u)+4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^{2k}}{1-q^{2k}} \sin(2ku),$$ wh...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\dfrac{\vartheta_2'(u)}{\vartheta_2(u)} = -\tan(u)+4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^{2k}}{1-q^{2k}} \sin(2ku),$$
+
$$\dfrac{\vartheta_2'(u,q)}{\vartheta_2(u,q)} = -\tan(u)+4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^{2k}}{1-q^{2k}} \sin(2ku),$$
 
where $\vartheta_2$ denotes the [[Jacobi theta 2]], $\tan$ denotes the [[tangent]], and $\sin$ denotes [[sine]].
 
where $\vartheta_2$ denotes the [[Jacobi theta 2]], $\tan$ denotes the [[tangent]], and $\sin$ denotes [[sine]].
  

Revision as of 07:14, 27 June 2016

Theorem

The following formula holds: $$\dfrac{\vartheta_2'(u,q)}{\vartheta_2(u,q)} = -\tan(u)+4\displaystyle\sum_{k=1}^{\infty} (-1)^k \dfrac{q^{2k}}{1-q^{2k}} \sin(2ku),$$ where $\vartheta_2$ denotes the Jacobi theta 2, $\tan$ denotes the tangent, and $\sin$ denotes sine.

Proof

References