Difference between revisions of "Relationship between Bessel I sub 1/2 and sinh"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
<strong>[[Relationship between Bessel I sub 1/2 and sinh|Theorem]]:</strong> The following formula holds:
 
<strong>[[Relationship between Bessel I sub 1/2 and sinh|Theorem]]:</strong> The following formula holds:
 
$$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$
 
$$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$
where $I_{\frac{1}{2}}$ denotes the [[Modfied Bessel I sub nu|modified Bessel function of the first kind]] and $\sinh$ denotes the [[Sinh|hyperbolic sine]].
+
where $I_{\frac{1}{2}}$ denotes the [[Modified Bessel I sub nu|modified Bessel function of the first kind]] and $\sinh$ denotes the [[Sinh|hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 00:31, 5 July 2015

Theorem: The following formula holds: $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$ where $I_{\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\sinh$ denotes the hyperbolic sine.

Proof: