Difference between revisions of "Weierstrass elementary factors"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Weierstrass elementary factors $E_n$ are defined for $n \in \{0,1,2,\ldots\}$ by $$E_n(z)=\left\{ \begin{array}{ll} 1-z &; n=0 \\ (1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ld...")
 
Line 3: Line 3:
 
1-z &; n=0 \\
 
1-z &; n=0 \\
 
(1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$
 
(1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> The following formula holds for $|z| \leq 1$:
 +
$$\left| 1-E_n(z) \right| \leq \left| z \right|^{n+1}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>

Revision as of 00:42, 11 May 2016

The Weierstrass elementary factors $E_n$ are defined for $n \in \{0,1,2,\ldots\}$ by $$E_n(z)=\left\{ \begin{array}{ll} 1-z &; n=0 \\ (1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$

Properties

Proposition: The following formula holds for $|z| \leq 1$: $$\left| 1-E_n(z) \right| \leq \left| z \right|^{n+1}.$$

Proof: