2Phi1(q,-1;-q;z)=1+2Sum z^k/(1+q^k)
From specialfunctionswiki
Theorem
The following formula holds: $${}_2\phi_1(q,-1;-q;z)=1+2\displaystyle\sum_{k=1}^{\infty} \dfrac{z^k}{1+q^k},$$ where ${}_2\phi_1$ denotes basic hypergeometric phi.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $4.8 (7)$