2cos(mt)cos(nt)=cos((m+n)t)+cos((m-n)t)
From specialfunctionswiki
Theorem
The following formula holds for $m,n \in \{0,1,2,\ldots\}$: $$2\cos(mt)\cos(nt)=\cos((m+n)t)+\cos((m-n)t),$$ where $\cos$ denotes cosine.
Proof
References
- 1978: T.S. Chihara: An Introduction to Orthogonal Polynomials ... (next) $(1.1)$