Antiderivative of arcsinh
From specialfunctionswiki
Theorem
The following formula holds: $$\displaystyle\int \mathrm{arcsinh}(z) \mathrm{d}z = z \mathrm{arcsinh}(z)-\sqrt{z^2+1} + C,$$ where $\mathrm{arcsinh}$ denotes the inverse hyperbolic sine.