F(2n+1)=F(n+1)^2+F(n)^2
From specialfunctionswiki
Theorem
The following formula holds: $$F(2n+1)=F(n+1)^2+F(n)^2,$$ where $F(n)$ denotes a Fibonacci number.
The following formula holds: $$F(2n+1)=F(n+1)^2+F(n)^2,$$ where $F(n)$ denotes a Fibonacci number.