Li2(z)=zPhi(z,2,1)
From specialfunctionswiki
(Redirected from L 2(z)=zPhi(z,2,1))
Theorem
The following formula holds: $$\mathrm{Li}_2(z)=z\Phi(z,2,1),$$ where $\mathrm{Li}_2$ denotes the dilogarithm and $\Phi$ denotes the Lerch transcendent.
Proof
References
- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi: Higher Transcendental Functions Volume I ... (previous) ... (next): $\S 1.11.1 (22)$