Difference between revisions of "Cosecant"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
{{:Derivative of cosecant}}
  
 
<center>{{:Trigonometric functions footer}}</center>
 
<center>{{:Trigonometric functions footer}}</center>

Revision as of 05:17, 20 March 2015

The cosecant function is defined by $$\csc(z)=\dfrac{1}{\sin(z)}.$$

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z)=- \cot(z)\csc(z),$$ where $\csc$ denotes the cosecant function and $\cot$ denotes the cotangent function.

Proof

Using the quotient rule and the definitions of cosecant and cotangent, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \csc(z) &= \dfrac{\mathrm{d}}{\mathrm{d}z} \left[ \dfrac{1}{\sin(z)} \right] \\ &= \dfrac{0-\cos(z)}{\sin^2(z)} \\ &= -\csc(z)\cot(z), \end{array}$$ as was to be shown. █

References

<center>Trigonometric functions
</center>