Difference between revisions of "Kelvin bei"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
  
 
<center>{{:Kelvin functions footer}}</center>
 
<center>{{:Kelvin functions footer}}</center>
 +
 +
[[Category:SpecialFunction]]

Revision as of 18:37, 24 May 2016

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

<center>Kelvin functions
</center>