Difference between revisions of "Derivative of tangent"
From specialfunctionswiki
Line 1: | Line 1: | ||
− | + | ==Theorem== | |
− | + | The following formula holds: | |
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \sec^2(z),$$ | $$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \sec^2(z),$$ | ||
where $\tan$ denotes the [[tangent]] function and $\sec$ denotes the [[secant]] function. | where $\tan$ denotes the [[tangent]] function and $\sec$ denotes the [[secant]] function. | ||
− | + | ||
− | + | ==Proof== | |
− | + | ||
− | + | ==References== | |
+ | |||
+ | [[Category:Theorem]] | ||
+ | [[Category:Unproven]] |
Revision as of 07:35, 8 June 2016
Theorem
The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \tan(z) = \sec^2(z),$$ where $\tan$ denotes the tangent function and $\sec$ denotes the secant function.