Difference between revisions of "Kelvin ber"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The $\mathrm{ber}_{\nu}$ function is defined as
 
The $\mathrm{ber}_{\nu}$ function is defined as
 
$$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$
 
$$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$
where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
+
where $\mathrm{Re}$ denotes the [[real part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J|Bessel function of the first kind]].
  
 
<div align="center">
 
<div align="center">

Revision as of 20:09, 9 June 2016

The $\mathrm{ber}_{\nu}$ function is defined as $$\mathrm{ber}_{\nu}(z)=\mathrm{Re} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Re}$ denotes the real part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

References

[1]

<center>Kelvin functions
</center>