Difference between revisions of "Kelvin bei"
From specialfunctionswiki
Line 6: | Line 6: | ||
<gallery> | <gallery> | ||
File:Kelvinbei,n=0plot.png|Graph of $\mathrm{bei}_0$. | File:Kelvinbei,n=0plot.png|Graph of $\mathrm{bei}_0$. | ||
+ | File:Kelvinbei,n=1plot.png|Graph of $\mathrm{bei}_1$. | ||
File:Domcolkelvinbeisub0.png|[[Domain coloring]] of $\mathrm{bei}_0$. | File:Domcolkelvinbeisub0.png|[[Domain coloring]] of $\mathrm{bei}_0$. | ||
</gallery> | </gallery> |
Revision as of 00:31, 11 June 2016
The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.
Domain coloring of $\mathrm{bei}_0$.