Difference between revisions of "Kelvin bei"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
[[Category:SpecialFunction]]
  
<center>{{:Kelvin functions footer}}</center>
+
{{:Kelvin functions footer}}
 
 
[[Category:SpecialFunction]]
 

Revision as of 00:33, 11 June 2016

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{bei}_{\nu}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( z e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Im}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.

Kelvin functions